

NORTH SUMATRA BASIN: ITS EVOLUTION AND SEDIMENTATION EVOLUTION

ALIT ASCARIA Ph.D.

CCOP. P1W2: North Sumatra-Mergui Basin Case Study. Medan & Parapat, 27 – 30 April 2010

- Introduction
- Regional Geology of North Sumatra
- Paleogeography
- Petroleum Systems
- Conclusion

(Barber *et al.,* 2005)

Comparison of the Carboniferous, Permian, and Triassic sequences of the eastern Sumatra Sibumasu Terrane and GRDC map sheets, the Indochina Terranes of west Sumatra and the eastern Malay Peninsula

BASEMENT LITHOLOGY

Comparison of the Carboniferous, Permian, and Triassic sequences in the Sibumasu terranes of eastern Sumatra, West Malaysia and Thailand, and Gondwana Terrane in NW Australia

GULF OF THAILAND

8

SOUTH SUMATRA BASIN

50

NATUNA ISLANDS

NATUNA SEA

JAVA SEA

(Barber et al., 2005)

50 Length of cross-section 800km

(Barber et al., 2005)

Mutus

Mutus Assemblage (of age unknown)

During the Mid – Late Triassic, the whole of Sumatra and Peninsular Malaya were subjected to NE- SW extension with the formation of several north - south and NW – SE graben structures, the Kualu and Tuhur basins in Sumatra and the Semantan and Semanggol Basin in Malaya, separated by intervening horst blocks.

Kualu Fm.Eq. (2,525 -2,725m); Max.porosity is 12%, average 2-5%, Sw is about 85%, and K is <10mD, with very fresh water <1000ppm Cl.

Sample PPT-1 Well, 2595m; fine SS; quartz grains, and chert rock fragments with slightly sutured grain contacts; visible porosity generaly 5%, locally increased to 10 – 15%.

Sample PPT-2 Well, 2650.8 – 2650.86 m; lithic SS; quartz grains dominant, poorly sorted, and individual grains are– 15%.

PPT - 2'A WELL : 2700-TD

Mulhadiono, 1984

(Andreason et al., 1997)

(Andreason et al., 1997)

Schematic cross section showing geological model of N. Sumatra basin

(Widarmayana, 2007)

(Barber et al., 2005 modified)

(Hakim et al., 2007)

⁽Barber et al., 2005)

STRUCTURAL FRAMEWORK OF N.SUMATRA BASIN

(Clure, 2005)

Basin development : Syn rift period

Basin development : Late rift & Sag periods (Collins e

(Collins et al., 1996)

(Collins et al., 1996)

Play Concept and Risk

- Fracture/Sub-Thrust Play
 - Complex reservoirs, difficult to image
 - Relatively high success rate onshore (in Pase area)
 - High productivity, but difficult to estimate GIP
 - Matrix contribution essential
 - Disappointing reservoir performance

- Buildup Plays Eocene/ Middle Miocene Peutu/Arun/Malacca/Tampur
 - Lower technical risk in reefs but remaining opportunities are small & mainly offshore
- Clastic Plays Eocene/Oligocene, Miocene/Pliocene
 - High technical risk for trap, source/migration, seal & reservoir quality

BOUGUER GRAVITY IMAGES AND CONTOUR LINES MAP

(Geo Prima Energi, 2009) gravity in mGal, contour intervals 1 mGal

BASEMENT CONFIGURATION (BASED ON SEISMIC MAPPING & GUIDED BY GRAVITY DATA)

FORMASI	SUMUR	TIPE Reservoar	TOP	BOT.	GROSS SAND	NET Sand	N/G	Vsh	POR	к	Sw	NOTES
			m-MD	m-MD	m	m		%	%	mD	%	
BASAL SAND	SCG-1	Fluvial Channel Sand	2756	2928	171.5	49.8	0.29	25.5	16.3	4.27	57.5	DST-1 (26.486 mmscfd)
	ARO-1	Dist. <u>Chanelel</u> Sand	3234	3442	184	71.9	0.39	4.9	11.3	64.04	29.8	DST-2 (9.07 mmscfd)
	STD-1	Deltaik – Bar Sand	2963	3077	296	40	0.14	20- 40	5-12		50-70	UKL-2 TG=240 unit
BELUMAI	SCG-1	Limestone	2640	2689	49	25	0.51	16.2	15.8	0.82	50.3	DST-4 (0.353 mmscfd)
	ARO-1	Sandy Limestone	2975	3097	122	34.3	0.28	10.9	8.7	2.33	46.5	DST-5 (0.6 bwpd
	STD-1	Sandy Limestone	2819	2935	166	57	0.39	25	8		50-80	UKL-3 TG=1000 unit
MBS	SEC-1	Turbidite Sand	1749	2000	138	66	0.48	23.1	12		63.3	
	SEC-2	Turbidite Sand	1799	1995	141	95	0.67	44.1	15.7		85	
	STD-1	Turbidite Sand	1800	1892	92	66	0.72	24.9	13	5.0	66	
	SEM-A1	Turbidite Sand	1877	1935	58	45	0.77	32.8	5.9	6.0	70	
	ABY-1	Turbidite Sand	1906	1951	45	14	0.31	43.7	6.8	4.2	79	

Series of Half Graben System

Untested Play in West Glagah

East Perlak-1

Spud date: oct.1981

Objective: Turbidite sandstone Baong Formation, carbonate Peutu Formation and sandstone of Brukash Formation.

Deep well drilled in Perlak Platform

Result of East Perlak-1 Baong Formation consists mainly of interbedded fine sandstone and shale Peutu Carbonate consists of interbedded fine sandstone and planktonic foram bioclastic wackestone in the upper part and planktonic foram bioclastic wackestone in the lower part. Depositional environment is open marine condition. Brukash Formation composed of interbedded fine sandstone and shale. TD at Pre-Tertiary Dolomite?

NSO Field (Esso 1972)

- Gas & Cond (93/7)
- 191 MMBOE Recoverable
- Belumai Fm Carbonate Reef
- · Top Reservoir: 3800'
- · Column Height: 576'
- Avg Porosity: 23%
- Avg Sw: 8%
- Avg Perm: 200 md (10-3,700md)
- Normally pressured and 267 F Temp
- Area: 45 km2 or 11,000 acres
- Porosity enhancement from CO2

In *BLD-1* Well at the time < 4 million year ago estimated had happened early stages of the oil generation in the upper part of *Prapat Formation*

Thermal Geohistory

Estimated the formation of hydrocarbons in the BLD-1 Well happened on the *upper part of Prapat Formation* at temperature 105° - 120° C and occurred in 2 million years ago

- There are potential for pre-Tertiray play in North Sumatra Basin (NSB)
- Oligo-Miocene carbonate still the main target for exploration in NSB.
- Finding prolific basin like Java and Lho Sukon Deeps is a must in NSB for high impact exploration target (Arun/NSO size).
- Distribution of Middle Baong sandstone still poorly understood especially in Andaman area.
- For sandstone play need to have a good trap since tectonic is relatively intense during Plio-Pleistocene.
- Despite all the risk, NSB still have a potential for exploration to finding big hydrocarbon resources.
- Gas shortage to LNG/PIM/DMO need to fulfilled by explore the NSB